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The point vortex approximation of a vortex sheet in two space dimensions is 
examined and a remedy for some of its shortcomings is suggested. The approximation 
is then applied to the study of the roll-up of a vortex sheet induced by an elliptically 
loaded wing. 

INTRODUCTION 

The study of the motion of vortex sheets in two-dimensional space is of great 
importance in a number of practical problems [I, 2,5], as well as in the design of 
numerical algorithms [3]. Rosenhead [lo] introduced a method of analysis in 
which the sheet is approximated by an array of point vortices; this method was 
applied by Westwater [12] to the roll-up problem. Recently, Takami [l l] and 
Moore [8] have shown that this method can produce errors of arbitrarily large 
magnitude, and thus cast a doubt on its validity. On the other hand, other vortex 
methods, involving interpolation [4] or a cut-off [3], have recently achieved notable 
successes in different contexts; one of them has even been proved to be convergent 
[6]. This discrepancy is of substantial interest, and it is the purpose of the present 
paper to contribute to its resolution. 

It is fairly obvious that a point vortex approximation to a vortex sheet (or for 
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that matter, to a continuous vorticity distribution) cannot be taken too literally, 
since a point vortex induces a velocity field which becomes unbounded, and 
cannot approximate a bounded field in any reasonable norm. Thus the results of 
Takami and Moore are understandable. However, we conjecture that as soon as the 
velocity field of the point vortices is smoothed out and made bounded, i.e., the 
point character of the point vortices is not taken too literally, the approximation 
becomes reasonable. Such smoothing occurs in all successful applications, and in 
fact one may conjecture that the old results of Westwater are better than the 
new results of Takami and Moore because the limited accuracy of precomputer 
calculation had a smoothing effect. We intend to present numerical evidence in 
support of this conjecture in an application to a problem involving the roll-up of 
a vortex sheet. 

APPROXIMATION OF A VORTEX SHEET BY A FINITE ARRAY OF POINT VORTICES 

Consider a vortex sheet whose vorticity is parallel to its length and whose 
two-dimensional cross section initially lies on the curve C: x = x(s), y = v(s), 
where x and y are the coordinates of a point and s is the arc length. The vorticity 
distribution is 5 = t(s). The sheet will be moved by the velocity field which it 
induces; the equations of motion are 

ax -a -= 
at ?/ .c c & log I r(s) - rW)l W) ds' 

ay 
e -=a 

at J 
-!- log 1 r(s) - r(s’)l ((s’) ds’ 

s c 2n 

where r = (x, y), j r I = / x2 + y 2 1/2, x = x(t, s), y = y(r, s). In Rosenhead’s 1 
approximation the sheet is replaced by an array of N point vortices, located at the 
points ri = (xi ~ yi) of C, with vorticities ti , i = l,..., N whose distribution 
approximates t(s). The motion of these N vorticies is then described by the N 
ordinary differential equations, 

where # = (1/2n) log 1 r / is the stream function associated with a point vortex 
(see Ill>. 

It is readily seen that the right-hand sides of Eqs. (2a), (2b) are rectangle rule 
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approximations to the integrals on the right-hand sides of Eqs. (l), and as such can 
be expected to approximate the latter well, as long as the derivatives of the 
integrands are not too large, i.e., as long as I d&ds 1, I ax/as /, / ay/as 1 are bounded 
by some constant K which is small compared to h-l, where h is a typical distance 
between vortices. When this condition is not satisfied, the approximate balance 
between the flow due to the vortices on either side of a given vortex will no longer 
hold because of the unduly large flow produced by a point vortex, and the several 
vortices will capture each other, i.e., start following complicated paths around 
each other. Once this process starts at any point, it rapidly spreads throughout 
the sheet; this type of breakdown was well documented in [2, 8, 1 I]; see also below. 

In summary, as soon as the approximation (2) ceases to be accurate because the 
numerical parameter h becomes comparable with the intrinsic characteristic lengths 
of the problem, it also becomes qualitatively unreasonable. This breakdown is 
analogous to the effect of nonlinear instability in a difference scheme (see [93). 
In the case of difference schemes, cures are known: One can sometimes reduce h 
(at the cost of added computational labor) or, if the region of inaccuracy is initially 
small, one can introduce an artificial viscosity so designed that its effect is local. 
The analog of this latter technique is smoothing, which we shall now explain on an 
example. 

VORTEX SHEET INDUCED BY AN ELLIPTICALLY LOADED WING 

Consider in particular the vortex sheet initially located on the strip --a < x < CI, 
with vorticity distribution 

If = 2Ux(a2 - x2)-1/2. 

The significance of this particular configuration is explained in [l]. Clearly the 

t*= 5 x 10-5 
+= 

t*= IO x lo- 
* 

FIG. 1. M = 50, At* = 5 x lo-&, no cut-off. 
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vortex point method is likely to fail at the tips of the sheet x = &a, since at these 
points d(/dx becomes unbounded. A typical breakdown is illustrated in Fig. 1 
(which is analogous to the results displayed by Takami [11] and Moore [8]). 
The strip is divided into 2M pieces of equal total vorticity, and a point vortex of 
strength f2Ua/M is placed at the vorticity centroid of each piece. A dimensionless 
time t* = W/a is introduced. In the calculation which leads to Fig. 1 we used 
M = 50; equations (2) were integrated using a fourth-order Runge-Kutta method 
with At* = 5 x 10-5. The positions of the last 12 vortices at the extreme right-hand 
side of the sheet are displayed at times t * = 5 x 10-5, 1 Oe4, 4 x 10-4; they are 
connected in the order in which they were initially placed. Chaos is generated at the 
tip before the other vortices have had time to move appreciably. The approximation 
(2) seems to be inapplicable. 

Now replace # = (112~) log ) r 1 in Eqs. (2) by 

WW log I r 1, 
63 = l(l/Z,)(~ r i/u) + const 

r 3 0; 
r < u. 

G is a (small) cut-off. The introduction of such a cut-off is analogous to the intro- 
duction of a small viscosity which allows the vorticity in a point vortex to diffuse 
(see [I]). It is artificial rather than real viscosity since its effect is not cumulative; 
the vorticity is diffused a little, and then spreads no more. If (T is of order a/M2, 
only the motion of the few vortices near the tip will be affected. The particular form 
of +,, was chosen by analogy with the form used in Chorin [3], but in fact almost 
any form which keeps the velocity field bounded for small enough r seems to be 
adequate. We again use a Runge-Kutta algorithm, with At* = 5 x 10-5, and 
0 = 6a/M2. The results are displayed in Fig. 2 for the times indicated. The spurious 

t*= 25 x I O-5 
-dJ : 

t*=50 x lo-5 
+ = 

FIG. 2. M = 50, At* = 5 x IOF, (I = 6a/M’. 
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motion near the tip has been damped, and the roll-up is proceeding as expected. 
These results are independent of u/(a/M2) within a wide range. It is important to 
note that the introduction of the cut-off does not affect the mutual interaction of 
distant portions of the sheet; furthermore, the results are not sensitive to the exact 
choice of &, for r < u. 

In choosing a Runge-Kutta integration formula, unevenly spaced vortices and 
a very small time step, we have followed the example of Takami and Moore, 
whose aim was to display the breakdown in the approximation. Our aim, of course, 
was to show that on the contrary, with u # 0 the roll-up proceeds smoothly under 
otherwise comparable conditions. If on the other hand, one is interested in the 
evolution of the sheet, one might as well pick a substantially larger dt* (subject 
to the obvious convergence requirement U dt < a); it is furthermore reasonable 
to use a straightforward Euler scheme, which is more economical in terms of 
computing time and does not introduce errors of larger order than those originating 
from the replacement of (1) by (2); finally, there is no obvious reason not to use 
equidistant vortices whose intensity is proportional to the value of .$ at their 
location. Figures 3 and 4 were obtained under such conditions, with dt* = 10-2. 
Figure 3 displays the configuration at t * = 1, with M = 50, u = a/M. These 
changes effect a saving in computer time, but do not affect the nature of the solution. 
An effort was made to verify Kaden’s result [7] to the effect that the sheet has the 
form of a spiral with polar equation r = C(0 - &,)2/3 as 8 -+ co. C and B0 were 
determined using the locations of the vortices marked A and B. Vortices 1 through 
14 are seen to lie on the resulting spiral with no visible error. Kaden’s result has 
been derived with the help of simplifying assumptions, and is not expected to hold 
uniformly throughout the spiral [5]. The agreement we obtained is therefore quite 
satisfactory. 

Figure 4 displays the configuration at t * = 6.5, with u = a/M. At this time, it is 
no longer clear that we have an approximation to a sheet. We may as well consider 
that we have real but small viscosity; the distribution of vorticity in the region of 
concentrated vorticity is then continuous, and our scheme with cut-off is then 

FIG. 3. At* = 1O-2, M = 50, o = a/M, t* = 1. 
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FIG. 4. At* = IO-*, M = 50, o = 2a/M, t* = 6.5 

known to be valid (see [3, 61). The results in Figs. 3 and 4 are in fact independent 
of cr. They are reproduced with only minor differences even when G = 0, provided 
we keep At* = 1O-2; this is consistent with the fact that nonlinear instability has 
a smaller impact when the time step is increased (see [9]). Thus, one seems to be 
able to use numerical error as a smoothing mechanism which keeps the point 
vortex approximation under control. 

CONCLUSION 

We have shown that Rosenhead’s point vortex approximation is valid and 
useful, provided the singular character of all the vortices is obviated by some 
smoothing. This fact explains the discrepancy between the failure of some point 
vortex approximations and the success of others. 
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